Artificial intelligence–enabled rapid diagnosis of patients with COVID-19

Autor(es):
Mei, Xueyan
Editor: Nature Medicine, 2020Descripción: 14 págsTipo de contenido: texto (visual)
Tipo de medio: electrónico
Tipo de soporte: recurso en línea
ISSN: 1078-8956Tema(s): Sanidad digital | Inteligencia Artificial | coronavirus | COVID-19 | deep learningRecursos en línea: Acceso al artículo Resumen: For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT–PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT–PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT–PCR assay and next-generation sequencing RT–PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an area under the curve of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of patients who were positive for COVID-19 via RT–PCR who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients.
Lista(s) en las que aparece este ítem: Economía del dato e IA
    Valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Estado Notas Fecha de vencimiento Código de barras
Artículos Artículos CDO

El Centro de Documentación del Observatorio Nacional de las Telecomunicaciones y de la Sociedad de la Información (CDO) os da la bienvenida al catálogo bibliográfico sobre recursos digitales en las materias de Tecnologías de la Información y telecomunicaciones, Servicios públicos digitales, Administración Electrónica y Economía digital. 

 

 

Colección digital Acceso libre online .pdf, .html 1000020176183

For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT–PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT–PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT–PCR assay and next-generation sequencing RT–PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an area under the curve of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of patients who were positive for COVID-19 via RT–PCR who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients.

No hay comentarios en este titulo.

para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes

Copyright© ONTSI. Todos los derechos reservados.
x
Esta web está utilizando la política de Cookies de la entidad pública empresarial Red.es, M.P. se detalla en el siguiente enlace: aviso-cookies. Acepto